June 21, 2021

NYS DEC – Division of Water
Bureau of Water Resource Management
625 Broadway, 4th Floor,
Albany, NY 12233-3508
Sent via email to: waterlog@dec.ny.gov

RE: Comments on the draft Total Maximum Daily Load for Phosphorus in Cayuga Lake

To whom it may concern,

The Tompkins County Water Resources Council (TC WRC) serves as Tompkins County’s Water Quality Coordinating Committee (WQCC). WQCCs are communication and collaboration vehicles for water quality activities in all counties across New York State. The TC WRC regularly updates the county’s Water Quality Strategy, which serves as a guidance tool for prioritizing and carrying out water quality programming in the county.

In this role, we have participated in the dialogue, scientific research, and public outreach regarding the southern end of Cayuga Lake since the mid 1990’s. We created a Monitoring Partnership in 2006 that includes researchers and stakeholders beyond Tompkins County to improve our understanding of the health of Cayuga Lake, natural processes, potential issues, monitoring needs, and best management practices.

TC WRC Engagement:

In 2008, we prepared a monitoring plan for the southern end of the lake and submitted that to New York State Department of Environmental Conservation (DEC). Ultimately, many of the items suggested in that monitoring plan were included in the work done for the Cayuga Lake Modeling (CLM) project.

A representative from the Monitoring Partnership, who is also a TC WRC member, served on the technical advisory committee (TAC) for the CLM project.

Two members of the TC WRC participated in development of the 2018 Cayuga Lake HABs Action Plan, which is heavily referenced in the draft Total Maximum Daily Load (dTMDL).

DEC staff, Cornell University, Finger Lakes Institute, Wells College, and Ithaca College scientists as well as a number of water resource managers have given presentations to the TC WRC and/or Monitoring Partnership, participated in dialogue regarding lake science and contributed to official comment letters on proposed permits, monitoring, and regulations regarding Cayuga Lake.
Outreach:

TC WRC provided regular lake science updates to the public via a series of Ithaca Journal articles from 2009-2010.

Jeff Meyers, retired director of DEC’s Bureau of Monitoring and Assessment, participated in monthly Monitoring Partnership meetings from 2013 to 2016 building relationships, trust and exchanging knowledge with local stakeholders. That relationship directly resulted in delisting of the southern end of Cayuga Lake as impaired by pathogens through the receipt of monitoring data from the Community Science Institute and Ithaca Area Wastewater Treatment Facility.

It is from this long history of direct engagement with DEC on the topic of Cayuga Lake that the TC WRC provides the following comments on the dTMDL as areas of concern and issues to be addressed.

Areas of concern:

- The dTMDL does not list phosphorus (P) as the pollutant in the problem statement nor does it list the specific use that is impaired, with the exception of Table 1, page 9. General references and inferences to use impairments and threats are made throughout the document. The inconsistent and general language make it hard to determine the purpose of the dTMDL. It does not provide guidance on the priority of total phosphorus (TP) versus soluble reactive phosphorus (SRP) focus. It does not provide evidence to support that the proposed reductions will lead to decreases in algae.

- The dTMDL was supposed to give specific guidance on tackling TP and SRP, it does not.

- The dTMDL overstates the impact of TP on HABs as reported in the 2018 HABs Action Plan.

- The dTMDL uses chlorophyll-a (Chl-a) as a metric for success of the TMDL – this is not a state listed water quality standard.

- The dTMDL conflates TP values with the advent of HABs in Cayuga Lake and the need for the dTMDL. It implies reducing TP will reduce HABs. The evidence collected during the CLM project and extensive other data do not support this notion.

- The dTMDL attempts to create an impairment around drinking water drawn from Cayuga Lake by the Southern Cayuga Lake Intermunicipal Water Commission (SCLIWC) in the form of disinfection byproduct formation by:
 - making general connections between nutrients and algae,
 - tying that to specific incidences of TP guidance value exceedances on the southern end (mostly during storm events) and
 - tying that to the proliferation of HABs in Cayuga Lake, and
 - making the general connection between natural organic matter (NOM) and disinfection byproducts (DBPs) in drinking water, and
• making general connections between TP and NOM with the implication that TP is on the rise and correlated to algae proliferation, which is not supported by the research DEC commissioned for this effort, and that NOM would increase with algae.

• The above attempt to create a drinking water impairment is fraught with errors.
 o DEC does not present historical data supporting an increase in NOM.
 o DEC’s own commissioned data do not support a relationship between TP and Chl-a (as a surrogate for algae and also as a surrogate for NOM) in the southern end of Cayuga Lake.
 o SCLIWC does not draw water from the southern end of Cayuga Lake.
 o DBP issues within the SCLIWC distribution system have been investigated and sourced to water age and volatile organic carbon in a water tank lining (engineering reports are available).
 o Local water purveyors using surface water (SCLIWC using Cayuga Lake, Cornell University using Fall Creek, and the City of Ithaca using Six Mile Creek) routinely measure dissolved organic carbon (DOC) as a measure of DBP formation potential. The data are freely available online. DOC levels are essentially the same in all three sources with no apparent upward trend over the last 18 years.
 o These facts and data refute the notion that Cayuga Lake’s NOM is increasing. These facts also call into question DEC’s concern over Cayuga Lake’s fitness as a source water while DEC has not expressed concern over the fitness of Fall Creek and Six Mile Creek as source waters.
 o Creating doubt about the safety of drinking water without evidence is irresponsible.

• Please remove the reference to a drinking water impairment unless substantial data are presented to support it.

There is a general lack of evidence supporting the listing of the southern end of Cayuga Lake as impaired by phosphorus, and more pointedly, a wealth of evidence not supporting the listing. TC WRC presents the following issues to be addressed regarding the listing:

• Please provide the data used initially to list the southern end Cayuga Lake as impaired by phosphorus, including the sample locations and dates so that it can be independently determined that the listing meets the Consolidated Assessment and Listing Methodology (CALM) requirements.

• Please provide information supporting the validity and application of the TP guidance value on the southern end condition, including that the TP was truly indicative of excessive amounts of algae.

• Please do not conflate the 2002 listing with HAB events in recent years unless DEC can refute the following: Based on data collected, analyzed, and reported under their direct supervision, TP levels have not continued to rise, TP levels are not correlated to Chl-a, and TP levels are not correlated to HABs.
• Please comment on why DEC has not reviewed the data collected in 2013 for the Cayuga Lake Modeling Project and submitted a delisting request to EPA based on those findings.
• We request DEC reconsider the appropriateness of using a TMDL as a mechanism for protection of Cayuga Lake. We suggest DEC apply the scientific findings from the CLM project and the models to a Nine Element (9E) approach. The 303(d) list also requires development of a TMDL, or alternative watershed management plan, for sediment. We strongly encourage DEC to pivot to the 9E approach in addressing sediment. We also suggest DEC support development of Watershed Rules and Regulations as a way to specifically protect Cayuga Lake as a drinking water source.

The TC WRC has repeatedly provided comments on the merits of the listing of Cayuga Lake for a phosphorus impairment. Over the years, the scientific backing for delisting has only increased, yet DEC dismisses or disregards these comments. Relevant comments from past years are included in this packet and highlighted as still relevant and still unaddressed. We request DEC delay releasing a TMDL until thoughtful and appropriate feedback on these comments is provided and is in sync with the published results on the water quality science of the lake. Based on the science, DEC should consider abandoning the TMDL process for phosphorus in Cayuga Lake.

Sincerely,

Cynthia Brock, Chair

Enc.

• WRC letter to DEC dated March 4, 2010
• WRC letter to EPA and DEC dated January 20, 2013
• WRC letter to DEC dated March 14, 2014
• WRC letter to Governor Cuomo dated October 27, 2017
2021 Membership Roster

<table>
<thead>
<tr>
<th>Voting Member</th>
<th>Seat</th>
<th>Voting Member</th>
<th>Seat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annie Bastoni</td>
<td>At-Large</td>
<td>Stephanie Redmond</td>
<td>At-Large</td>
</tr>
<tr>
<td>Fay Benson</td>
<td>Agriculture</td>
<td>Steve Riddle</td>
<td>Water Purveyor</td>
</tr>
<tr>
<td>Cynthia Brock</td>
<td>Municipal</td>
<td>Chuck Tauck</td>
<td>Business & Industry</td>
</tr>
<tr>
<td>Liz Cameron</td>
<td>TC Environmental Health</td>
<td>Elizabeth Thomas</td>
<td>Recreation</td>
</tr>
<tr>
<td>Amanda Champion</td>
<td>County Government</td>
<td>Linda Wagenet</td>
<td>At-Large</td>
</tr>
<tr>
<td>Barry Goodrich</td>
<td>Watershed Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michelle Henry</td>
<td>EMC Representative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marina Howarth</td>
<td>At-Large</td>
<td>Chris Bordlemay Padilla</td>
<td>Associate</td>
</tr>
<tr>
<td>Kristen Hychka</td>
<td>Municipal Government</td>
<td>Roxy Johnston</td>
<td>Associate</td>
</tr>
<tr>
<td>Emelia Jumbo</td>
<td>At-Large</td>
<td>Cedric Mason</td>
<td>Associate</td>
</tr>
<tr>
<td>Darby Kiley</td>
<td>TC Planning & Sustainability</td>
<td>Niamh O’Leary</td>
<td>Associate</td>
</tr>
<tr>
<td>Lynn Leopold</td>
<td>Municipal Government</td>
<td>Steve Penningroth</td>
<td>Associate</td>
</tr>
<tr>
<td>Jon Negley</td>
<td>TC Soil & Water Conservation District</td>
<td>Elaine Quaroni</td>
<td>Associate</td>
</tr>
<tr>
<td>Frank Proto</td>
<td>At-Large</td>
<td>Joanne Trutko</td>
<td>Associate</td>
</tr>
<tr>
<td>Brian Rahm</td>
<td>Environment</td>
<td>Tom Vawter</td>
<td>Associate</td>
</tr>
</tbody>
</table>
March 4, 2010

Mary Jane Peachy, Regional Engineer
Ken Lynch, Regional Director
NYS DEC, Region 7
615 Erie Blvd. West
Syracuse, NY 13204-2400

Mark Klotz, Division Director, Water
NYS DEC
625 Broadway
Albany, NY 12233

Dear Mary Jane, Ken and Mark,

Your recent campus visit regarding Cornell University’s Lake Source Cooling project was reported by our colleagues on the Cayuga Lake Monitoring Partnership (formerly the Water Resources Council/Cornell University Monitoring Partnership). It was encouraging to hear both about the visit and that the discussion focused on sound science and a sharing of viewpoints. This is exactly the approach the Tompkins County Water Resources Council (WRC) and Cornell University used in 2004 when we began discussing Lake Source Cooling (LSC) and Cayuga Lake. We now have a membership that is far broader than just the WRC and the University working collaboratively to address lake issues.

The Water Resources Council approved a Joint Statement (attached) detailing the collaborative partnership between the WRC and the University in 2007. The Joint Statement also includes the WRC’s opinion, based on review of all the available data at that time, that “the scientific consensus to date is that LSC does not contribute” to impairment issues in the southern end of Cayuga Lake. Since the Joint Statement was issued, more studies, reports and presentations have been forthcoming, all of which continue to support the conclusion that LSC is not harming the lake. Moreover, comparing these studies provides valuable insights to the state of Cayuga Lake:

- Cayuga Lake, including the southern basin, is well within mesotrophic metrics with the exception of limited storm events;
- Dramatic improvements have been made in both urban (publicly owned (treatment works) and rural (agriculture) practices to reduce loading of both sediment and phosphorus;
- Sediment and sediment-bound phosphorus loading is dominated by the streams, and the stream load is dominated by legacy sources (glacial deposits and sedimentation from pre-1900 agricultural practices), not current land use practices;
- The loss of wetlands in the southern basin creates a situation where turbid water and mucky lake bottoms are to be expected. Over time, the sediments deposited in the lake will reform lakeshore wetlands;
- The expectation of clear water suitable for swimming in the southern end of the lake is counter to the natural forces at work there;
- The use of total phosphorus (TP) as an indicator of trophic state is flawed in that it is not correlated to chlorophyll levels on the southern basin;
- Most importantly, the focus on TP and LSC has become a stumbling block to any discussion of the whole ecology of the lake, research needs, reasonable use expectations and sound management approaches.

The Tompkins County Water Resources Council is a citizen board that advises the Tompkins County Legislature on matters relating to the management of water resources, and does not necessarily express the views of the Tompkins County Legislature.
It is increasingly frustrating to see anecdotal information and emotional appeals featured in the newspaper or serious discussions on lake management, while professionals from a number of disciplines, who understand Cayuga Lake’s complex ecosystem, are seemingly marginalized.

The Cayuga Lake Monitoring Partnership hopes to raise the level of discussion regarding Cayuga Lake and its watershed through promotion of sound science.

To date the Partnership has accomplished the following:

- Served as a springboard for collaborative monitoring efforts and grant applications;
- Developed a working and flexible monitoring plan, (attached) which has served as a platform for important data sharing, research projects and grant writing;
- Promoted in-depth give-and-take discussions through community forums, and a monthly series in the Ithaca Journal on Cayuga Lake and its related challenges and opportunities, Cayuga 2.0, examples attached;
- Steadily consulted and worked with the Tompkins County Water Resources Council, Finger Lakes Institute, Cayuga Lake Watershed Network, Community Science Institute, Floating Classroom and other entities, including local governments, on the health of the lake and related issues, including the dominant role that tributaries play in this ecosystem.

The Partnership stands ready to help the DEC in its work tied to Cayuga Lake, including help in developing a greater understanding about the complexity of the system and sharing with the public the vast amount of data that has been collected since the onset of Lake Source Cooling. These data go a long way toward answering questions about pollutants, the health of the lake, and setting the boundaries for ecologically sound uses of the lake. This last item, ecologically sound uses, has highlighted the disparity between public perception and ecological reality regarding the lake.

The Tompkins County Water Resources Council is also available to assist the DEC in promoting scientifically based management approaches for Cayuga Lake. The WRC has fostered more than just the work of the Partnership through the efforts of the Wetlands Committee, Aquifer Committee, and Recreation Committee (reports attached). The WRC also has an Education Committee and is prepared to assist the DEC with changing preconceived notions about healthy water bodies, including the locally difficult issues of why "weeds" may be a good sign and how swimming is in conflict with ecological processes.

The work at hand requires open minds and a spirit of collaboration, rather than treading down old paths that may divide and divert. It sounds like the DEC, too, is seeking common, progressive ground.

Please let us know how we or various colleagues can assist you in your important work and deliberations.

Cordially,

Roxanna Johnston
Chair, Cayuga Lake Monitoring Partnership

Frank P. Proto
Chairman, Water Resources Council

cc: Pete Grannis, Commissioner, NYS Department of Environmental Conservation
cc: Rachel Crispell, Chairwoman, Tompkins County Ag & Farmland Protection Board

Enc.

The Tompkins County Water Resources Council is a citizen board that advises the Tompkins County Legislature on matters relating to the management of water resources, and does not necessarily express the views of the Tompkins County Legislature.
January 30, 2013

Mr. Jeffrey F. Gratz, Deputy Director
Clean Water Division, US EPA, Region 2
290 Broadway
New York, NY 10007-1866

Mr. Mark Klotz
Director
Division of Water
New York State Department of Environmental Conservation
625 Broadway
Albany, NY 12233-3500

Dear Mr. Gratz and Mr. Klotz:

The Water Resources Council (WRC) is an advisory board of the Tompkins County Legislature and serves as this county's Water Quality Strategy Committee (please see attached list of members and affiliations). We have been monitoring the state of the south end of Cayuga Lake for a number of years, both literally and figuratively. Two organizations represented on the WRC, the Ithaca Area Wastewater Treatment Plant and the Community Science Institute, operate NYSDOH-ELAP-certified laboratories and have collected tens of thousands of pieces of water quality data including phosphorus, sediment and pathogens on southern Cayuga Lake and its tributaries over the past ten years. **We have several questions regarding EPA’s October 11, 2012, letter to DEC concerning establishment of a Total Maximum Daily Load or other watershed management approach for Cayuga Lake.**

Overall comments
The WRC agrees with EPA that NYSDEC should assess the available data and more fully understand water quality dynamics in the southern portion of the lake in order to address any concerns. The WRC joins the EPA in requesting from DEC a schedule for establishment of a TMDL or other watershed management approach capable of addressing water quality problems in Cayuga Lake and we strongly support development of meaningful water quality standards that take into account climate, geology, and other relevant factors.

Impaired use:
The WRC has been given to understand that there is a recreational use impairment in the southern end of Cayuga Lake. Is swimming that impaired use? Swimming did occur at Stewart Park in the past. Available records show that the Tompkins County Health Department issued permits for swimming at Stewart Park beginning in 1957; however, water quality problems were
evident then. The Health Department had to close the swimming area repeatedly in 1962 due to water quality problems (silt, high bacterial counts, turbidity and a sewer break). There was also a drowning in 1961. The Health Department closed the swimming area in 1964 after another drowning (it took 3 days to find the body due to turbid water conditions). No further permits were issued. It is the opinion of the Tompkins County Health Department—and many scientists and resource managers agree—that public swimming is not, and likely never was, an appropriate use of the south end of Cayuga Lake. We agree that swimming is not an appropriate use in the south end of the lake and believe a Use Attainability Analysis is necessary before consideration of any TMDL development based on swimming as an alleged designated use impairment.

If swimming is determined to be the relevant impaired use, how are phosphorus levels related to that use without also considering silt/sediment and pathogens? If swimming is not the recreational use under consideration, we would like more specific information on which use is impaired and what the plans are to restore that use. While data presented at local meetings over the last several years indicate that Cayuga Lake is mesotrophic and healthy, we do not believe that in its natural state the lake’s south end will ever be suitable for swimming. The WRC respectfully requests additional information on designated uses, how those designated uses relate to water quality standards, and how water quality data are used to assess impairment and to design improvements in water quality in the south end of Cayuga Lake.

Water Quality Standard Exceedences:
It is our understanding that data indicate sediment, total phosphorus and pathogens do not exceed water quality standards outside of storm events. For example, base flow samples from 2007-2012 collected from the Floating Classroom and analyzed by the Community Science Institute’s NYSDOH-ELAP-certified laboratory show average E. coli counts of 8 to 49 colonies/100 mL, depending on sampling location.\(^1\) At a control site in the middle of the southern shelf, E. coli averages about 20 colonies/100 mL during the summer, total coliform averages about 500 colonies/100 mL and total phosphorus about 20 ug/L.\(^2\) Since available evidence indicates that base-flow concentrations of pathogens, total phosphorus, and sediment are within recognized guidelines for mesotrophic lakes, the question arises: Is stormwater being regulated as a pollutant? If not, what is the basis for the impairment? Specifically, does the south end of Cayuga Lake meet duration, periodicity, and seasonality criteria to be considered impaired?

Application of the TP: Trophic-State Relationship:
If TMDLs for phosphorus are chosen as the water quality management tool for the southern end of Cayuga Lake, will they be established based on bioavailable phosphorus or on all the phosphorus entering the lake, whether or not it is bioavailable? We understand that there is a well-established relationship between Total Phosphorus and the Trophic State in mid-lake situations. We have questions about the validity of applying that relationship in shallow, turbid and/or frequently mixed water bodies. Thus, we are concerned with the justification in applying the 20 ug/L guidance value to the southern end of Cayuga Lake under stormwater conditions,

1 See graphs of monthly averages at shelf control site at http://www.communityscience.org/database/monitoringlocations/84 and use drop-down menu to select graphs for various water quality parameters.
2 See graphs of monthly averages at shelf control site at http://www.communityscience.org/database/monitoringlocations/84 and use drop-down menu to select graphs for various water quality parameters.

The Tompkins County Water Resources Council is a citizen board that advises the Tompkins County Legislature on matters relating to the management of water resources, and does not necessarily express the views of the Tompkins County Legislature.
particularly since multiple years of data collected independently by the Community Science Institute (see above) as well as the Ithaca Area Wastewater Treatment Plant document that the guidance value of 20 ug/L total phosphorus is consistently met under base flow conditions. Are there data documenting excessive algae growth in the southern end of the lake?

Process for Establishing a Watershed Management Approach
The WRC requests clarification of the process through which establishment of a TMDL or other watershed management approach will be accomplished. Currently, data collection appears to be restricted to phosphorus as the impairment that the Lake Source Cooling (LSC) Facility SPDES may impact. This is clearly inadequate for development of any management approach addressing all listed impairments as it does not cover pathogens or sediment loads. Nor does it include review and incorporation of the extensive existing data on Cayuga Lake. Finally, it does not include review of the extensive data on neighboring Finger Lakes and other regional water bodies that could be valuable in determining what processes are unique to Cayuga Lake and what processes are not.

It is unclear how the LSC Facility permit interfaces with the TMDL process. The WRC requests that these two efforts be clearly defined and separated.

The WRC agrees with EPA that NYSDEC should organize a group of stakeholders to assess available data, identify data gaps, choose hydrodynamic and water quality models and develop a plan to achieve water quality standards in Cayuga Lake. However, this process has not been initiated. We request that the stakeholder group be organized without further delay. We concur with EPA’s list of suggested stakeholders and request that others be added: local Publicly Owned Treatment Works, Tompkins County Soil and Water Conservation District, Cornell University, relevant county advisory boards including the WRC and Environmental Management Council, Cayuga Nation, local and regional scientists, Tompkins County Health Department, local governments, the Community Science Institute, the Cayuga Lake Watershed Network and the Cayuga Lake Watershed Intermunicipal Organization.

The WRC is working with NYSDEC to review one component of the LSC draft permit - the proposed Quality Assurance Project Plan for monitoring to support development of a nutrient model for the lake. This review could be seen as a first step in developing a stakeholder role in the process, but there is confusion about how the two efforts are related. The WRC is not generally interested in inserting itself in the middle of a permit process; however, NYSDEC has indicated that future TMDL development will be largely based on this permit-required study. As long as the permit is being used as a vehicle to develop a TMDL, the WRC (and other community members) must insist on inclusion in all facets of the process as we and other local stakeholders are the ones who will be mandated to implement a TMDL.

The ultimate regulatory responsibility for development of a TMDL lies with the NYSDEC. State agencies, rather than third parties, ultimately adopt TMDLs and submit them for approval to EPA. Thus, any elements of a TMDL developed based on the data-gathering requirements of the LSC draft permit must be adopted by the state. NYSDEC should delineate how they will use the products developed by the LSC modeling project of Cayuga Lake. A series of other questions should also be addressed before any TMDL process is initiated:

The Tompkins County Water Resources Council is a citizen board that advises the Tompkins County Legislature on matters relating to the management of water resources, and does not necessarily express the views of the Tompkins County Legislature.
1) Who is making decisions about what data are included/excluded?
2) What is NYSDEC’s normal role in the development of TMDLs?
3) How will other stakeholders (and data) be included?
4) Who will coordinate the TMDL process?
5) Who makes the ultimate decisions regarding management of the south end of the lake?

Other Impairments:

Sediment. Exhaustive data sets document that the bulk of the phosphorus in the south end of the lake is delivered via the tributaries. Much of the tributary sediment load originates from natural (glacial deposits) and historical (legacy erosion deposits from agricultural practices 100 years past) sources.

A related project, dredging of the Cayuga Inlet, is slated to begin in 2014. As this project will be on-going for a number of years, will require permanent maintenance dredging, and addresses or is the result of the natural/historical sediment load to Cayuga Lake, it should be included in any TMDL or watershed management process. The local USGS office has the capability to measure sediment inputs to the system if funds were available. The WRC requests that NYSDEC pursue sediment modeling concurrently with nutrient modeling.

If swimming is the impaired use, we would like EPA and DEC to discuss how any TMDL or watershed management approach will offset natural and legacy inputs of sediment and phosphorus to the lake in sufficient quantity to meet modern bathing beach standards.

Pathogens. The Ithaca Area Waste Water Treatment Facility has been monitoring the south end of the lake for a number of years. Their data show consistently low densities and no strong correlation between storm events and elevated fecal coliform counts. As noted above, data collected by the Community Science Institute since 2007 show that E. coli levels at the south end of Cayuga Lake average about 20 colonies/100 mL during the warm season or about an order of magnitude lower than the EPA-recommended limit of 235 colonies/100 mL for swimming. A nearby Finger Lake used DNA sampling to determine that water fowl were the source of fecal coliforms and now use dogs to reduce bird presence on the beaches. The Cayuga Lake Watershed Network and a Cornell University scientist started developing a DNA library so that the sources of coliforms in/around Cayuga Lake could be identified. This, or some other pathogen study, should be completed concurrently with nutrient modeling. The WRC requests that NYSDEC explain the basis for designating the south end of Cayuga Lake as impaired due to pathogens and, pursue pathogen source determination concurrently with sediment and nutrient modeling.

The WRC requests information from NYSDEC on how sediment and pathogens will be addressed in a TMDL development process if these data are not collected as part of the TMDL process and the appropriate models are not developed. If TMDL development is ultimately pursued, all listed pollutants (sediment, nutrients, and pathogens) should be included.

The Tompkins County Water Resources Council is a citizen board that advises the Tompkins County Legislature on matters relating to the management of water resources, and does not necessarily express the views of the Tompkins County Legislature.
Other Watershed Management Options:
EPA's letter to DEC frequently refers to watershed management approaches other than TMDL development. The WRC requests further explanation from EPA and NYSDEC about what those other options might include. We respectfully request that the 'do nothing' option be given full consideration if existing data support that outcome.

Concluding Remarks:
The WRC supports responsible management of our watersheds and water resources. To that end, we support the thoughtful review of existing data, collection of any missing data, and development of appropriate management programs. Development of an adequate TMDL, or any watershed management plan, will require substantial financial and technical resources. The WRC would like to reiterate that there is an abundance of existing data and a large pool of technically capable individuals available to assist in this process. We look forward to a coordinated local, state, and federal effort to meet the project needs.

Cordially,

[Signature]

Frank P. Proto
Chairman, Water Resources Council

Encl.

Hard copies to:
NYS Senators Skelos, Kolb, O'Mara, Seward, and Nozzolio
Speaker Silver
Assemblywoman Lifton
Chair of Senate Committee on Environmental Conservation (via Mark Grisanti)
Chair of Assembly Committee on Environmental Conservation (via Robert Sweeney)
Chair of Assembly Committee on Water Resources Needs of NYS and Long Island (Robert Sweeney)
U.S. Senators Schumer and Gillibrand
NYSDEC Commissioner Martens
Tompkins County Legislature
Tompkins County Agriculture & Farmland Protection Board
Kate Hackett

Electronic copies to:
Mike Latham, NYS Ag & Markets
Cathy Mural, New York Farm Bureau
Don Pettit, NY Natural Resources Conservation Service
Cayuga Lake Monitoring Partnership
Tompkins County Environmental Management Council (EMC)
Tompkins County Council of Governments (TCCOG)
Tompkins County Information Officer

[The Tompkins County Water Resources Council is a citizen board that advises the Tompkins County Legislature on matters relating to the management of water resources, and does not necessarily express the views of the Tompkins County Legislature.]
2013 Tompkins County Water Resources Council Membership

<table>
<thead>
<tr>
<th>MEMBER NAME</th>
<th>SEAT ON WATER RESOURCES COUNCIL</th>
<th>AFFILIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson, Sharon</td>
<td>Cooperative Extension</td>
<td>Environmental Educator, Cooperative Extension</td>
</tr>
<tr>
<td>Andersson, John</td>
<td>At-Large</td>
<td>Retired Director of County Environmental Health</td>
</tr>
<tr>
<td>Benson, A. Fay</td>
<td>Agriculture</td>
<td>Small Farms Educator, Cooperative Extension</td>
</tr>
<tr>
<td>Bugliosi, Ed</td>
<td>US Geological Survey</td>
<td>USGS</td>
</tr>
<tr>
<td>Cameron, Liz</td>
<td>Environmental Health</td>
<td>Director of County Environmental Health</td>
</tr>
<tr>
<td>Carpenter, Scott</td>
<td>At-Large</td>
<td>State Emergency Management Office</td>
</tr>
<tr>
<td>Dwyer, Sarah</td>
<td>Business/Industry</td>
<td>Executive & Operations Associate, Concept Systems Inc.</td>
</tr>
<tr>
<td>George, William</td>
<td>Municipal Government</td>
<td>Self Employed Engineer</td>
</tr>
<tr>
<td>Goodrich, Barry</td>
<td>Watershed Organization</td>
<td>Town of Caroline Watersheds Committee</td>
</tr>
<tr>
<td>Johnston, Roxanna</td>
<td>Water Purveyor</td>
<td>Watershed Coordinator & Technical Director, City of Ithaca Water Plant</td>
</tr>
<tr>
<td>Jurkowich, Joan</td>
<td>County Planning Department</td>
<td>Deputy Commissioner, County Planning Dept.</td>
</tr>
<tr>
<td>Karig, Daniel</td>
<td>Recreation</td>
<td>Emeritus Professor, Earth & Atmospheric Sciences, Cornell University</td>
</tr>
<tr>
<td>Kiefer, Dooley</td>
<td>Associate Member</td>
<td>Tompkins County Legislature</td>
</tr>
<tr>
<td>Kiley, Darby</td>
<td>Municipal Government</td>
<td>Town of Ulysses Planner</td>
</tr>
<tr>
<td>Leopold, Lynn</td>
<td>Municipal Government</td>
<td>Village of Lansing</td>
</tr>
<tr>
<td>Lozano, Jose</td>
<td>Associate Member</td>
<td>Ithaca Area Wastewater Treatment Plant</td>
</tr>
<tr>
<td>Manning, Rick</td>
<td>At-Large</td>
<td>Self Employed Landscape Architect</td>
</tr>
<tr>
<td>Mawdsley, John</td>
<td>Associate Member</td>
<td>President, Cayuga Lake Watershed Network</td>
</tr>
<tr>
<td>McConnell, Gregg</td>
<td>At-Large</td>
<td>Farm Business Consultant & Chair of Fall Creek Watershed Committee</td>
</tr>
<tr>
<td>McGarry, Jim</td>
<td>EMC Liaison</td>
<td>Tompkins County Environmental Management Council</td>
</tr>
<tr>
<td>Miller, Todd</td>
<td>Associate Member</td>
<td>Retired Hydrologist, US Geological Survey</td>
</tr>
<tr>
<td>Penningroth, Steve</td>
<td>Associate Member</td>
<td>Executive Director, Community Science Institute</td>
</tr>
<tr>
<td>Proto, Frank</td>
<td>At-Large</td>
<td>Tompkins County Legislature</td>
</tr>
<tr>
<td>Quaroni, Elaine</td>
<td>At-Large</td>
<td>Retired Realtor with background in Chemistry</td>
</tr>
<tr>
<td>Rinaldo-Lee, Marjory</td>
<td>Environment</td>
<td>Retired Hydrogeologist, former President of Geologic NY, Inc.</td>
</tr>
<tr>
<td>Schutt, Craig</td>
<td>Soil & Water Conservation District</td>
<td>District Manager, Tompkins County SWCD</td>
</tr>
<tr>
<td>Shelley, Mary</td>
<td>Associate Member</td>
<td>Clinical Social Worker, Artist, Cayuga Lake Property Owner</td>
</tr>
<tr>
<td>Vawter, Tom</td>
<td>Associate Member</td>
<td>Professor of Biology & Environmental Studies, Wells College</td>
</tr>
<tr>
<td>Wagenet, Linda</td>
<td>Associate Member</td>
<td>Retired Researcher, Cornell University</td>
</tr>
</tbody>
</table>
March 14, 2014

Jeff Myers
NYS DEC - Division of Water
Bureau of Watershed Assessment and Management
625 Broadway, 4th Floor
Albany, NY 12233-3502

RE: 303(d) List of Impaired Waters

Dear Mr. Myers:

The Tompkins County Water Resources Council (WRC) appreciates the opportunity to comment on the 2014 Draft 303(d) List of Impaired Waters Requiring a TMDL/Other Strategy. In particular, we wish to address the listing of the south end of Cayuga Lake.

Cayuga Lake is an important community resource that provides wildlife habitat, recreational opportunities, and aesthetic value. Cayuga Lake is one of the major sources of drinking water for Tompkins County, and the lake draws a substantial number of tourists to our region. The WRC greatly appreciates the NYSDEC’s efforts to protect Cayuga Lake.

The Draft 2014 303(d) List identifies phosphorus and silt/sediment impairments for the south end of Cayuga Lake, and proposes removing the previously designated pathogen impairment. The WRC would like to acknowledge and support NYSDEC’s proposal to delist the south end of Cayuga Lake for pathogens.

The WRC would like to comment on the phosphorus impairment listed for the south end of Cayuga Lake. We believe that the phosphorus impairment listed for the south end of Cayuga Lake under 303(d) List, Part 1: Individual Waterbody Segments with Impairment Requiring TMDL Development is unfitting. Rather, we believe that the appropriate listing for the south end of Cayuga Lake at this time is Part 3b: Waterbodies for which TMDL Development May be Deferred (Requiring Verification of Cause/Pollutant/Source).

Local agencies, including Community Science Institute (CSI) and the Ithaca Area Wastewater Treatment Facility (IAWWTF), have collected data from the south end of Cayuga Lake since 2006. Both agencies have found that the majority of total phosphorus (TP) loading to Cayuga Lake originates from the tributaries (Cayuga Inlet and Fall Creek), rather than permitted point sources (see appendices). The portion south of the IAWWTF Outfall has exceeded, on average, the EPA Guidance value for TP of 20 ppb, which is characteristic of a sediment depositional zone significantly impacted by major tributaries (n=1,135, Appendix A). However, TP concentrations measured for the portion of the southern shelf that lies north of the IAWWTF Outfall averaged 20 ppb between 2006 and 2013, meeting the EPA...
Guidance value (n=565, Appendix A). TP concentrations in the middle of the south end of Cayuga Lake averaged 17.4 ppb during summers from 2007-2013 (n=13, Appendix B). Further, Lake Source Cooling data indicates that TP concentrations at the south end of Cayuga Lake have remained below the EPA Guidance value of 20 ppb since 2008 (Appendix A, Figure 7). Based on these available data, the WRC believes it is no longer appropriate to list the south end of Cayuga Lake under Part 1 of the 303(d) List, as requiring a TMDL due to phosphorus.

The WRC has been working with NYSDEC, Cornell University, and Upstate Freshwater Institute to improve our understanding of Cayuga Lake through the development of the Cayuga Lake Modeling Project. The Cayuga Lake Modeling Project is currently underway and final results have yet to be determined. Information provided by this project is crucial in assessing what phosphorus impairments may exist in the south end of Cayuga Lake.

The WRC has not seen data on which the original phosphorus impairment was listed, and we welcome the opportunity to review data used by NYSDEC in making this original listing determination for the south end of Cayuga Lake. To determine the extent of impairment, if any, posed by phosphorus, we would encourage NYSDEC to review data gathered and phosphorus loading estimates performed by IAWWT and CSI (see appendices), and data provided by the Cayuga Lake Modeling Project as it becomes available.

Based on current data, and as we wait for more information to become available, the WRC believes that the phosphorus impairment for the south end of Cayuga Lake is best listed under Part 3b of the 303(d) List: Water bodies for which TMDL Development May be Deferred (Requiring Verification of Cause/Pollutant/Source).

We look forward to working closely with NYSDEC as the Cayuga Lake Modeling Project continues to explore the health of Cayuga Lake.

Thank you for the opportunity to comment on the pending action. I would be happy to arrange a discussion with any of the WRC members regarding our material if you’d like. Please feel free to contact me through Jennifer Turner, Administrative Assistant, at 607-274-5560, should you desire such a gathering. Thanks again.

Sincerely,

Frank P. Proto, Chairman
Tompkins County Water Resources Council

The Tompkins County Water Resources Council advises the Tompkins County Legislature on matters related to water resources management and planning, and is charged with identifying problems, proposing priorities, and promoting the coordination of activities in the management and protection of the County’s water resources. The WRC provides a public forum for local communities and stakeholder groups to address and discuss their water resources concerns, and it is the intent of the group to coordinate the water resources-related efforts of local governments, public and private institutions, and agencies and organizations throughout the County.

The Tompkins County Water Resources Council is a citizen board that advises the Tompkins County Legislature on matters relating to the management of water resources, and does not necessarily express the views of the Tompkins County Legislature.
October 27, 2017

Honorable Andrew M. Cuomo
Governor of New York State
NYS State Capitol Building
Albany, NY 12224

Dear Governor Cuomo,

Request

The Tompkins County Water Resources Council (WRC – see enclosed “About Us”) writes to request that your administration let science be your guide in addressing the recent alarming increase of cyanobacteria, or harmful algae blooms (HAB), in the Finger Lakes. We have become aware that various sources are applying pressure to your administration to rush development of a Cayuga Lake Total Maximum Daily Load (TMDL) regulation based on a false assumption that lake phosphorus is directly related to increasing HABs. Worse still is the consistent pressure to ignore the considerable body of data collected under the supervision of the Department of Environmental Conservation (DEC) for development of the TMDL. These data show that phosphorus in Cayuga Lake is not available in concentrations that lead to degraded water quality. Furthermore, initial model analyses show that even drastic reductions to phosphorus inputs would make no noticeable difference in water quality for many decades.

Our Interest

The WRC has been actively engaged in the TMDL process from the beginning, including having a seat on the Technical Advisory Committee. We hosted three DEC meetings to provide updates on the TMDL effort to the public. Several WRC members serve on the Monitoring Partnership (MP), which includes members from various colleges and universities, stakeholders, and environmental professionals. The MP meets monthly and is regularly joined by staff from the DEC and Finger Lakes Water Hub (Hub), including Scott Kishbaugh, P.E., and recently retired head of the Lakes Monitoring and Assessment Section, Jeff Myers. Finally, several members of the WRC are also actively involved in sampling for HABs and worked closely with DEC and Hub staff this summer.

Costs

There are clear consequences to ignoring environmental degradation and the actions that create worsening conditions. It is our position that this concern is addressed by the considerable body of data collected for the TMDL showing that Cayuga Lake is neither under- nor over-productive and that there is no imminent threat of degradation from current phosphorus inputs.
There are also consequences to implementing regulations that do not address the problem. Phosphorus input to water bodies is by-and-large a nonpoint source (NPS) pollution issue. TMDLs are not well suited to address NPS pollution but rather target already permitted facilities and municipalities. In our case that would be publicly owned treatment works (POTW) and other wastewater entities. The largest POTW on Cayuga Lake is the Ithaca Area Waste Water Treatment Facility. It is a state of the art facility and has dramatically reduced phosphorus inputs via operational improvements and the addition of tertiary treatment. Cornell University also has a permitted discharge at their Lake Source Cooling (LSC) facility. This discharge does not introduce new phosphorus into the lake. Furthermore, data collected during the TMDL study show that the water circulated by LSC onto the southern shelf of Cayuga Lake reduces the likelihood of algae blooms by increasing circulation in the area. Changes to operations at either of these facilities could easily cost millions. Together, these two sources contribute less than 5% of the phosphorus to the southern end of the lake. Municipal costs would likely come in the form of more restrictive storm water regulations. To fund these, local business and taxpayer rates would necessarily increase. Yet, the sources of phosphorus have been determined to be largely from upstream. Recent HAB blooms in Skaneateles and other ‘clean’ lakes worldwide show that targeting phosphorus is not guaranteed to reduce HAB risk.

Harmful Algae Blooms

A comprehensive overview of the science of HABs was held on September 30, 2017. Speakers and attendees included staff from the DEC and the Hub. Slides from the presentations are available at: http://www.communityscience.org/outreach-and-education/habs_forum/. Another excellent conference on HABs was held March 4, 2017, in Auburn, NY. Again, DEC and Hub staff were presenters and/or attendees. These same individuals are involved in developing Cayuga Lake’s TMDL. DEC staff seem to be well aware that the HABs and phosphorus in Cayuga Lake (or any lake) are not directly correlated. What emerged from both conferences was the lack of easy answers for HABs control. There is no doubt that nutrients are needed to trigger a bloom. There is, however, clear evidence that excessive phosphorus is no guarantee of a bloom or that consistent low levels of phosphorus will prevent blooms. Much more work needs to be done in order to determine the triggers for blooms before effective controls can be developed.

In Summary

The WRC wants to take this opportunity to applaud your administration, in particular your DEC Lakes Monitoring and Assessment Section and the Finger Lakes Water Hub staff for their response to this year’s HAB events. We want to ask that you continue to support them in their response efforts and to provide their collaborators with the resources they need to learn more about HABs so that we may better manage them and their potential health impacts. As part of that support, we ask that they are given the time necessary to develop appropriate responses rather than adopting an arbitrary timeline for development of regulations that may, or may not, provide beneficial outcomes.

If you have any questions, please feel free to contact me for more information (607-387-9778; Kiley@ulysses.ny.us).

Respectfully,

Darby Kiley
Chair, Tompkins County Water Resources Council

Enclosures

The Tompkins County Water Resources Council is a citizen board that advises the Tompkins County Legislature on matters relating to the management of water resources, and does not necessarily express the views of the Tompkins County Legislature.
The Tompkins County Water Resources Council is a citizen board that advises the Tompkins County Legislature on matters relating to the management of water resources, and does not necessarily express the views of the Tompkins County Legislature.
About Us

The Water Resources Council (WRC) advises the Tompkins County Legislature on matters related to water resources management and planning, and is charged with identifying problems, proposing priorities, and promoting the coordination of activities in the management and protection of the County's water resources. The WRC provides a public forum for local communities and stakeholder groups to address and discuss their water resources concerns. It is the intent of the group to coordinate the water resources-related efforts of local governments, public and private institutions, and agencies and organizations throughout the County.

The WRC is also Tompkins County’s Water Quality Coordinating Committee (WQCC). Since nonpoint source (NPS) water pollution is a land use issue, and land use decisions are made locally, no one level of government or single group of people can solve NPS problems. County WQCCs were formed across New York State to develop and implement County Water Quality Strategies to address NPS issues. As County Soil & Water Conservation Districts are authorized by law to implement local programs to reduce NPS pollution, they became the focal point for establishing the WQCCs and are key to implementing the strategies that identify and set local priorities.
TOMPKINS COUNTY WATER RESOURCES COUNCIL

MEMBERSHIP ROSTER
As of 10/26/2017

<table>
<thead>
<tr>
<th>Name</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharon Anderson</td>
<td>Cornell Cooperative Extension of Tompkins County</td>
</tr>
<tr>
<td>John Andersson</td>
<td>At-Large</td>
</tr>
<tr>
<td>Fay Benson</td>
<td>Agriculture</td>
</tr>
<tr>
<td>Chris Bordlemay</td>
<td>Water Purveyor</td>
</tr>
<tr>
<td>Cynthia Brock</td>
<td>Recreation</td>
</tr>
<tr>
<td>Liz Cameron</td>
<td>Tompkins County Division of Environmental Health</td>
</tr>
<tr>
<td>George Fowler</td>
<td>At-Large</td>
</tr>
<tr>
<td>Bill George</td>
<td>Municipal Government</td>
</tr>
<tr>
<td>Barry Goodrich</td>
<td>Watershed Organization</td>
</tr>
<tr>
<td>Michelle Henry</td>
<td>Environmental Management Council Liaison</td>
</tr>
<tr>
<td>Emelia “Mia” Jumbo</td>
<td>At-Large</td>
</tr>
<tr>
<td>Joan Jurkowski</td>
<td>Tompkins County Department of Planning and Sustainability</td>
</tr>
<tr>
<td>Dooley Kiefer</td>
<td>Tompkins County Legislature Liaison</td>
</tr>
<tr>
<td>Darby Kiley</td>
<td>Municipal Government</td>
</tr>
<tr>
<td>Lynn Leopold</td>
<td>Municipal Government</td>
</tr>
<tr>
<td>Jon Negley</td>
<td>Tompkins County Soil & Water Conservation District</td>
</tr>
<tr>
<td>Frank Proto</td>
<td>At-Large</td>
</tr>
<tr>
<td>Elaine Quaroni</td>
<td>At-Large</td>
</tr>
<tr>
<td>Marjory Rinaldo-Lee</td>
<td>Environment</td>
</tr>
<tr>
<td>Michael Thorne</td>
<td>At-Large</td>
</tr>
<tr>
<td>Kristen Hychka</td>
<td>Associate Member</td>
</tr>
<tr>
<td>Roxy Johnston</td>
<td>Associate Member</td>
</tr>
<tr>
<td>Jose Lozano</td>
<td>Associate Member</td>
</tr>
</tbody>
</table>

The Tompkins County Water Resources Council is a citizen board that advises the Tompkins County Legislature on matters relating to the management of water resources, and does not necessarily express the views of the Tompkins County Legislature.
The Tompkins County Water Resources Council is a citizen board that advises the Tompkins County Legislature on matters relating to the management of water resources, and does not necessarily express the views of the Tompkins County Legislature.

<table>
<thead>
<tr>
<th>Name</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darren MacDougall</td>
<td>Associate Member</td>
</tr>
<tr>
<td>John Mawdsley</td>
<td>Associate Member</td>
</tr>
<tr>
<td>Todd Miller</td>
<td>Associate Member</td>
</tr>
<tr>
<td>Steve Penningroth</td>
<td>Associate Member</td>
</tr>
<tr>
<td>Joanne Trutko</td>
<td>Associate Member</td>
</tr>
<tr>
<td>Tom Vawter</td>
<td>Associate Member</td>
</tr>
<tr>
<td>Linda Wagenet</td>
<td>Associate Member</td>
</tr>
</tbody>
</table>
Trophic State, Tripton, Pelagic Versus Near-Shore, and Modeling Issues for Cayuga Lake, NY.

A report prepared by:
Upstate Freshwater Institute
P.O. Box 506
Syracuse, NY, 13214

July 2008
Abstract

An analysis of limnological and input monitoring data for Cayuga Lake, NY is presented that addresses differences in metrics of trophic state and turbidity between pelagic waters and a shallow (< 6 m) near-shore area (the shelf) that receives multiple inputs, within the context of the effects of tripton and mixing processes and modeling needs. The analysis is based on a combination of long-term monitoring and shorter-term studies, including: (1) 10 to 20 years of measurements of concentrations of chlorophyll a [Chl], total phosphorus [TP], and other forms of P; (2) 10 years of measurements of Secchi disc depth (SD) and surrogates of light scattering, including turbidity [Tn], and the beam attenuation coefficient at 660 nm [c(660)]; (3) P and Tn measurements for point sources and tributaries that enter the shelf (4 to 10 y) and related constituent loading calculations; (4) a 40 site transect along the length of the lake (> 50 km) with rapid profiling instrumentation that resolves spatial patterns in thermal stratification, fluorometric chlorophyll a, and c(660); (5) light scattering versus gravimetric features of minerogenic tripton particles from tributary, shelf and pelagic sites; and (6) extent of mixing between the shelf and pelagic waters. Despite the P loading received from local sources, summer average [Chl] levels are not significantly higher on the shelf compared to bounding pelagic waters because of the high flushing rate of the shelf promoted by mixing with pelagic waters. The generally higher [TP], c(660), and Tn, and lower SD on the shelf compared to pelagic waters is shown to reflect inputs of clay minerals. The particle sizes of this material, which diminished SD and increased Tn and c(660) on the shelf, are shown to be in the 1 to 10 µm range. Two water quality modeling initiatives are recommended to guide related management deliberations: (1) a lake-wide seasonal P or nutrient-phytoplankton model, with a two-dimensional transport framework that would provide longitudinal and vertical resolution, and (2)
a shorter-term three-dimensional model for the tripton component of $c(660)$ that would simulate the dynamics and spatial details of the impacts of runoff events on clarity levels on the shelf.
Introduction

Cultural eutrophication, most often linked to anthropogenic phosphorus (P) loading, continues to be a concern for many lakes and reservoirs (Cooke et al. 2005). Related manifestations of phytoplankton blooms and poor water clarity represent degradations in water quality that are widely targeted for improvements in rehabilitation programs. However, care must be exercised in considering the common trophic state metrics of concentrations of chlorophyll a ([Chl]) and total phosphorus ([TP]), and Secchi disc transparency (SD; Carlson 1977, Rast and Lee 1978, Chapra 1997) in diagnosing such potential problems. In particular, consistent indications from these three metrics can only be expected where phytoplankton biomass is the primary regulator of SD and component of the TP pool (Carlson 1977, Hecky et al. 1993). Substantial quantities of tripton (inanimate particles) cause a disconnect amongst these metrics by making noteworthy contributions to [TP] and decreasing clarity through increased light scattering (Effler et al. 2002b).

Lake and tributary monitoring data support basic limnological characterization, identification of anthropogenic effects and targets for rehabilitation, and the design and testing of mathematical models intended to guide management. Long-term monitoring data sets provide an invaluable perspective to inform management deliberations. Effective integration of this information into contemporary programs, including the total maximum daily load (TMDL) process, is essential for effective management (Lung 2001, Effler et al. 2002a, Gelda and Effler 2003). The need for a TMDL analysis, and the targeted constituents, reflect the failure of a water body to meet specific water quality standards or guidelines. The TMDL is defined as the pollutant loading rate that will result in water quality standards or goals being met; it is the summation of point and non-point contributions, plus a margin of safety intended to account for
uncertainties in the quantitative coupling between external loads and in-lake water quality (USEPA 1991). This quantitative coupling takes the form of a water quality model (USEPA 1991).

The water quality model is the central quantitative feature of contemporary management programs, and of TMDL analyses in particular (Lung 2001). For example, the TMDL is determined through iterative *a priori* (Bierman and Dolan 1986) model projections that establish the external loading levels that will result in meeting in-lake goals or standards. A credible and representative model for this process is one that represents a synthesis of the understanding of the system and the behavior of the constituents of interest. The structure and capabilities of such models need to reflect: (1) the behavior of the target constituent(s); (2) the magnitude(s) and format(s) of the water quality goal(s) or standard(s); (3) the range of management alternatives being considered; and (4) results of related system-specific monitoring and process studies. Structural needs of water quality models can generally be partitioned according to transport and kinetic submodels (Chapra 1997). The primary issue for transport submodels is the physical dimensionality (e.g., one-vertical, two-vertical and longitudinal, and three-vertical, longitudinal, and lateral) necessary to describe the important spatial features of impact and regulating transport processes (Martin and McCutcheon 1999). The water quality issue(s) largely drives the state variables of the kinetic submodel (the limnological features to be predicted) and influences importantly its structural needs, though widely different levels of complexity are available for certain issues (Chapra 1997). Moreover, different water quality issues may have widely divergent time scales of interest, such as short-term concerns for turbidity impacts from runoff events or the longer seasonal focus for levels of phytoplankton biomass (Thomann and Mueller 1987). Differences in water quality between pelagic and shallower near-shore areas are
influenced by local hydrologic and material loading and bathymetric conditions, as well as by an array of mixing processes (Martin and McCutcheon 1999). These spatial differences are of broad management concern and offer special challenges for effective structuring of models to represent these conditions and associated drivers.

Here we analyze long-term limnological and tributary monitoring data for Cayuga Lake, NY, in the context of water quality issues related to cultural eutrophication and clarity, the effects of tripton and transport processes, the needs for the development and testing of a water quality model(s), and the appropriate target constituent(s) for a TMDL analysis. Differences between near-shore and pelagic regions are documented and considered with respect to origins and structural needs of the model(s) and the role of tripton. This case study is valuable because of the broad concern for the features of water quality considered, the complications from tripton, and the issue of pelagic versus shallow zone differences.

Cayuga Lake and Water Quality Issues

Cayuga Lake (lat. 42° 41.3' N; long. 76° 41.2’ W) is the fourth easternmost of the New York Finger Lakes (Fig. 1). This lake is narrow and configured along a north/south axis (Fig. 1). It has the second largest volume (9.38 x 10^9 m^3) and the largest surface area of the Finger Lakes (Schaffner and Oglesby 1978). The mean and maximum depths are 54.5 and 132.6 m, respectively. This alkaline hardwater lake has a warm monomictic stratification regime, stratifying strongly in summer, but only rarely developing complete ice cover (Oglesby 1978). The lake’s hypolimnion remains well oxygenated (Oglesby 1978). Water exits the basin through a single outlet at the northern end. The average detention time of the lake is about 10 years (Shaffner and Oglesby 1978, Michel and Kraemer 1995). About 40% of the tributary inflow is contributed by Fall Creek and Cayuga Inlet that enter at the southern end (Fig. 1). Parts of the
shallow southern end of the lake had been bordered by a marsh before it was filled in the early 1900s to support development. Phytoplankton growth in the lake is P limited (Oglesby 1978). Zebra mussels invaded this lake and other waters of the region in the early to mid-1990s (Effler and Siegfried 1994, New York Sea Grant 2000).

Cayuga Lake is an invaluable resource to the region that is used for contact recreation, fishing, navigation, as a water supply by several communities, and for disposal of treated municipal wastewater. The largest adjoining community is the City of Ithaca (population ~30,000) that is located at the southeastern corner of the lake. The shallow southern end of the lake receives three permitted discharges, effluent from two domestic wastewater treatment facilities (Ithaca Area WWTP, and Cayuga Heights WWTP), with average discharge flows of 0.3 and 0.07 m3/s, and spent cooling water from a “lake source cooling” (LSC) facility (Cornell University; Fig. 1). The limit for the concentration of total phosphorus ([TP]) of the WWTP effluents had been 1 mg/L (Great Lakes basin standard). Substantial reductions in P loading from the Ithaca Area WWTP have been achieved recently from upgrades in treatment. Cold water is withdrawn from a depth of nearly 80 m (hypolimnion) by the LSC facility and returned to the shallow waters of the southern end of the lake. The discharge varies seasonally, from ~0.65 m3/s in the cold months to ~2 m3/s in summer. This represents an artificial form of internal cycling (e.g., load) of P.

Conditions in the shallow southern end of the lake have generally been considered degraded relative to the pelagic zone (Oglesby 1978). This shallow southern zone, demarcated as the southernmost 2 km where depths are less than 6 m (Fig. 1), is designated here as the “shelf”. The shelf is on New York’s list of water quality limited systems (section 303d of the Clean Water Act). The “causes/pollutants” designated by the state regulatory agency for the
impairment of conditions on the shelf are "phosphorus, silt/sediment, and pathogens"; the identified sources were both municipal and non-point inputs. A TMDL analysis(es) is anticipated.

Some interpretation of meaning and appropriate metrics for the listed causes/pollutants is valuable to bring focus to the analysis presented in this paper. Phosphorus is a stated concern here as a central driver of cultural eutrophication and the commonly associated attributes of high concentrations of phytoplankton biomass ([Chl]) and low Secchi disc transparency (SD). The silt/sediment designation refers to inanimate particles, tripton in the language of limnology (Wetzel 2001), and would commonly be represented by the metrics of the concentration of total suspended solids ([TSS]) or turbidity (Tₐ). The closure of the public swimming beach located on the southern portion of the shelf in the early 1960s was attributed to both turbidity and public health (high concentrations of indicator bacteria) problems.

The "pathogens" listing on the 303d list is ambiguous as it potentially includes broad ranges of microbes of public health concern, with widely different analytical and model framework demands. Pathogenic protozoans, particularly Giardia and Cryptosporidium, are particularly problematic because of the extraordinary monitoring and measurement demands and the required "particle tracking" modeling approach (Dimou and Adams 1993, Costa and Ferreira 2000). Modeling of the fecal coliform indicator group is a more tractable approach that has been applied with some success where defined tributary inputs have imparted conspicuous signatures in time and space in receiving waters (Canale et al. 1993, Hyer and Moyer 2004). However, available data (Cayuga Lake Watershed Network 2007) are not adequate to support development and testing of a fecal coliform model, thus, the pathogen issue is not considered further here. In addition, anecdotal observations suggest proliferation of submerged macrophytes and
macroalgae on the shelf. An increased zebra mussel population may be promoting these conditions (Hecky et al. 2004, Auer et al. 2008).

Methods

Lake data for this analysis were drawn from a number of monitoring efforts conducted since the late 1960s. Chlorophyll a and [TP] data from before the 1990s are representative of pelagic areas (limited to [TP] and [Chl]); thereafter observations from the shelf were also available. The most spatially and temporally comprehensive data for the common metrics of trophic state were collected for the shelf and adjoining areas as part of an on-going program (ten years of data considered here) to assess potential impacts of Cornell University’s LSC facility (operations initiated in 2000) on the lake, conducted by the authors and coworkers. Certain data for two years (1998 and 1999) of this program have been presented previously (Matthews et al. 2002).

Five sites monitored as part of the LSC program are used here to represent conditions on the shelf (1a, 1b, 3, 4 and 5; Fig. 1). Pelagic conditions are represented here primarily by a single site (8) located ~ 13 km north of the southern end of the lake (Fig. 1). All of these sites have been sampled bi-weekly over the April – October interval. Composite (depth) samples from the epilimnion, formed from equal volumes of sub-samples from depths of 0, 2 and 4 m, are collected at sites 5, and 8; those for the other shallower sites were formed from sub-samples from 0 and 2 m. The influent to the LSC facility is monitored weekly. Laboratory analyses included [TP], total dissolved P ([TDP]), soluble reactive P ([SRP]), and turbidity (Tₐ), all measured according to standard methods (Clesari et al. 1998), and [Chl] (according to Parsons et al. 1984). Field measurements at each of the sites included temperature (T), and the beam attenuation coefficient at 660 nm [c(660)]. These measurements were made by sensors configured in a steel
cage and powered by a Sea Bird® SeaLogger Profiler. Both $c(660)$ (Babin et al. 2003, Loisel et al. 2007) and T_n (Kirk 1994, Effler et al. 2006) are accepted surrogate measures of the light scattering coefficient (b) that quantifies the intensity of the light scattering process. A strong linear relationship(s) generally prevails between $c(660)$ and T_n [e.g., $T_n = 2.3 \times c(660)$; Effler et al. 2006].

A single longitudinal transect of SeaBird profiles ($n = 40$ sites) was collected along the entire length of Cayuga Lake on August 6 1996; these profiles also included the measurement of chlorophyll a fluorescence (Chla). Hourly measurements of T were made at a depth of 1 m at a fixed location on the shelf (Fig. 1) over the April – October interval annually as part of the LSC monitoring program. The LSC withdrawal (influent), is monitored weekly for [SRP]. Fall Creek and Cayuga Inlet were monitored for [TP], [TDP], [SRP] and T_n bi-weekly (on the day of lake monitoring) near their mouths over the 2003-2006 period.

Estimates of TP loading from the various inputs to the shelf were supported by continuous measurements of flow rate in Fall Creek (USGS gage no. 04234000), Cayuga Inlet (USGS gage no. 04233000), and the discharge of the two WWTPs and the LSC facility, and discrete measurements of [TP] (twice per week for Ithaca Area WWTP, and weekly for Cayuga Heights WWTP and LSC discharge). Phosphorus data from the WWTPs are those reported by the facilities. Additional data for Fall Creek for selected high flow intervals over 2003-2006 were provided by the Community Science Institute. Loads of TP from the WWTP discharges were calculated at a monthly time step as the products of monthly average flows and concentrations. Loads from the two large tributaries were calculated at a daily time step with the FLUX software (option 6, log transformed concentration-flow relationship), designed for such applications (Walker 1995).
The light scattering characteristics of individual minerogenic (inorganic) particles, including projected particle area, particle size, and elemental composition, were measured by an individual particle analysis (IPA) technique, Scanning electron microscopy interfaced with Automated X-ray microanalysis and image analysis (SAX; Peng and Effler 2005). Six samples were analyzed, two each from Fall Creek, site 5 (shelf), and site 8 (pelagic). One sample represented higher turbidity and runoff conditions, the other corresponded to low flow conditions. SAX provides both morphometric and chemical characterizations of individual particles. Inorganic particles were chemically classified into one of five classes, 'Clay' (clay minerals), 'Quartz', 'Calcium-rich' (CaCO₃), 'Calium-agg' (aggregate particles – that include partial coating with CaCO₃), and 'Other' (miscellaneous) (e.g., Peng and Effler 2005). Analytical protocols for SAX have been described previously (Peng and Effler 2005, 2007). SAX results are presented in three formats, the minerogenic particle projected area per unit volume of water (PAVm), the minerogenic scattering coefficient at 600 nm \([b_m(660)]\) (calculated according to Mie theory; Peng and Effler 2007), and minerogenic particle volume per unit volume of water (VVm). Particle projected area and light scattering are fundamentally (and nearly linearly) linked (Stramski et al. 2001, Peng and Effler 2007). Accordingly, measurements of PAVm and calculated values of \(b_m\) have been reported to be tightly coupled (Peng and Effler 2007, Peng et al. 2007). Values of VVm are presented as a metric of gravimetric concentrations, as it is approximately proportional to a mass concentration for particle types with similar specific gravities. Values of \(b_m\) and VVm are presented in cumulative particle size contribution formats, to resolve the contributions of different particle sizes to these metrics (Babin et al. 2003, Peng and Effler 2007).
Results and Discussion

Loads to the Shelf

Substantial interannual variations in hydrologic and estimated P loading to the shelf occurred over the 10 y interval 1998 - 2007 (Fig. 2a - c). Systematic interventions associated with the discharges contributed to these variations. The average inflow rate to the shelf for the April - October interval increased approximately 11% following the startup of the LSC facility in 2000 (Fig. 2a). The inflow rates from the two WWTP discharges have been relatively uniform, particularly compared to natural variations in runoff from the two large tributaries. Moreover, these discharges make small contributions to the total inflow to the shelf; e.g., together these inputs represented on average 6% of the inflow. Inputs from Fall Creek and Cayuga Inlet dominate overall inflow to the southern end of the lake. Accordingly, the wide interannual variations in the overall inflow to the shelf have been driven primarily by natural variations in runoff from these tributaries. Average tributary flow ranged from about 2 m3/s in 1999 to 14 m3/s in 2004. Flow rates from these two tributaries are similar and temporal patterns generally track each other; e.g., the rates have been highly correlated ($r = 0.90$) at a monthly time step. The flow from Cayuga Inlet is about 85% of that observed from Fall Creek. The effects of a wide range of tributary flows have been captured in the last 10 y of monitoring. The average April - October flows in Fall Creek for 1999 and 2004 were ranked the 3rd lowest and 2nd highest of the 83 y record, respectively.

Estimates of P loading were partitioned according to the dissolved (TDP$_L$, kg/d) and particulate (PPL, kg/d) fractions, in recognition of the widely different levels of bioavailability of these forms to support algae growth (Young et al. 1982, Auer et al. 1998, Effler et al. 2002). Most (Young et al. 1982), if not all (Auer et al. 1998), of the dissolved pool is either
immediately, or subsequent to enzymatic hydrolysis (Gage and Gorham 1985), available. In sharp contrast, the portion of the PPL that becomes available (e.g., converted to dissolved forms) is substantially less, though municipal waste constituents are generally more available than terrigenous material (DePinto et al. 1981, Young et al. 1982, Effler et al. 2002a). The fraction of PPL available from most tributaries is between 30 and 50%, while values for WWTPs are typically > 60%.

The P loadings from the WWTPs were assumed to be split evenly between the dissolved and particulate pools, as observed for another local facility with similar P treatment (Effler et al. 2002a). The partitioning for the LSC input was based on measurements made in the lake (hypolimnion) adjoining the intake. The concentration of SRP in the hypolimnion withdrawn by the LSC facility increased over the 2000 to 2006 interval from ~ 5 to ~ 9 µg/L on average (modest annual seasonality embedded; Fig. 3a). Accordingly, this has shifted the LSC load of this available form higher. Such an increase in hypolimnetic concentrations is likely reflective of lake-wide metabolism (e.g., shift in mineralization of depositing organic material), given the active mixing throughout those layers mediated through internal waves. Tributary loading estimates of these fractions were based on stream-specific concentration versus flow relationships developed from the monitoring observations (Fig. 3b and c). Increases in concentrations of both fractions were observed at higher flows, though the relationship was stronger for PP (Fig. 3b) compared to TDP (Fig. 3c). Concentrations of TDP were generally somewhat higher in Fall Creek than Cayuga Inlet. The FLUX software supports estimates of uncertainty for the tributary loading calculations. Coefficients of variation (CV) for the Fall Creek estimates of PPL and TDP for the 1998-2006 interval were 33 and 6%, respectively; for Cayuga Inlet the CVs were 26 and 40%.
The large interannual variations in both TDP_L (Fig. 2b) and PPL (Fig. 2c) were primarily driven by the dynamics of stream flow (Fig. 2a). However, embedded within these dynamics were systematic decreases in loading from the WWTPs from improved treatment, particularly at the Ithaca Area facility. These improvements for this facility were manifested in two steps, a 1.5-fold decrease for the 2002 – 2005 interval relative to 1998 – 2001, and a 3.7-fold decrease in 2006 and 2007 from the 1998-2001 interval. These effects on overall PPL were modest because the tributaries often made much greater contributions (Fig. 2c). The PPL represented approximately 67% of the P loading to the shelf over the 10 year period. The reductions in loading from the WWTPs were relatively more noteworthy for the TDP_L. These point source inputs represented the majority of the loading of this bioavailable fraction in the earlier portion of this period, particularly in the low runoff years of 1999 and 2001. However, increased contributions from the tributaries in high runoff years, such as 2004 and 2006, can mask the benefits of the major reductions in loading from the point sources (Fig. 2b). The contribution of the LSC discharge has generally been relatively minor. However, under low flow conditions and following the upgrades in treatment at the WWTPs, such as prevailed in 2007, LSC represented about 7.5% of the P loading to the shelf.

The flow-weighted [TP] for the mixture of the various inputs (three discharges and two tributaries, [TP]_fw) is a valuable diagnostic that integrates the effects of flow and loads from the multiple inputs, according to

\[[TP]_{fw} = TP_L + Q \]

where TP_L = TDP_L + PPL. High concentration inputs thus have a disproportionate effect on [TP]_fw relative to their contribution to total flow. If the shelf was isolated from the remainder of the lake (e.g., with a controlled outflow to the main lake) [TP] concentrations on the shelf would
be expected to approach [TP]_{fw}. Calculated values of [TP]_{fw} ranged from ~ 45 μg/L in 2007 to ~ 120 μg/L in 1998 (Fig. 2d). Largely progressive decreases in the dissolved component were calculated over the 2001 to 2007 interval (Fig. 2d). The particularly low [TP]_{fw} value for 2007 reflects the combined effects of low Q and increased treatment at the Ithaca Area WWTP.

Turbidity levels in the two tributaries increase at higher levels of runoff, in a manner similar to that observed for PP (Fig. 3b and d). Significant (p < 0.0001) positive relationships prevailed between PP and Tₐ (Fig. 3e), linking the P content and light scattering attributes of these terrigenous particles. The particles in Fall Creek were significantly (one-tailed t-test, p < 0.0001) more enriched with P than in Cayuga Inlet; the average PP ÷ Tₐ ratios were 4.9 and 3.1, respectively.

Limnological Characterization

Trophic State

Long-term conditions and interactions are reviewed here for the three common trophic state indicators, [Chl], [TP], and SD, for pelagic waters and the shelf (Fig. 4a - c). Summer (June – August) average values for the upper waters are considered in the review of long-term trends, to be consistent with the constructs of the TP “guidance” value (i.e., open to some regulatory discretion) for New York to protect recreational uses of lakes (NYSDEC 1993). This limit, 20 μg/L as a summer average for the upper waters, is generally consistent with the upper bound of mesotrophy specified for [TP] by several researchers (Vollenwider 1975, 1982, Chapra and Dobson 1981, Auer et al. 1986). Monitoring coverage for [Chl] and [TP] included the mid-1960s to late 1970s and regularly since the mid-1990s; SD data and observations for the shelf (represented by average values) are available only for this last interval (Fig. 4).

Chlorophyll a Concentration [Chl]
Summer average [Chl] increased from the late 1960s to the 1970s but has been lower since the mid-1990s (Fig. 4a). The indicated lower levels of phytoplankton biomass over this interval (all within mesotrophic limits, Chapra 1997) may reflect the effect of various drivers, including New York’s continuing ban on high P detergents (since the early 1970s), improved municipal wastewater treatment and invasion of the zebra mussel (New York Sea Grant 2000). Note that no systematic decrease has yet occurred in [Chl] in response to the recent reduction in P loading from the Ithaca Area WWTP. In 2006 the somewhat higher [Chl] could have been due to the more than compensating increases in tributary inputs from elevated runoff (Fig. 2b and c). However, the average [Chl] values for the shelf and pelagic site in 2007 (Fig. 4a) remained similar to observations in recent years, despite the substantial decreases in both TDP_L (Fig. 2b) and P_P_L (Fig. 2c). The mean summer [Chl] on the shelf for the 1994 – 1996 interval was 70% higher than in pelagic waters. However, based on measurements made by the authors and co-workers over the 1998 – 2007 interval (Fig. 4a), the summer mean values for the shelf and pelagic waters (site 8) were not significantly different. Despite loadings received from major local sources of P (Fig. 1), there is no compelling evidence that it causes conspicuously higher levels of phytoplankton biomass on the shelf relative to bounding pelagic waters, as represented by site 8.

Interannual variations in the mean [Chl] have not been significantly correlated with those for [TP] or SD, on the shelf or at site 8. Moreover, [Chl] levels at this pelagic site were independent of interannual differences in P loading to the shelf. However, a significant (p = 0.004) positive relationship was observed for summer average [Chl] on the shelf; 67% of the interannual variability was explained by differences in TDP_L (Fig. 4d). With the exception of
lower concentrations in April, there has been no strong recurring seasonality in [Chl] in the lake over the April-October interval (Fig. 4e).

Phosphorus Concentrations

Decreases in [TP] in pelagic waters from the early 1970s to the last 10 y interval were modest compared to those reported for [Chl] (Fig. 4a and b). Noteworthy differences in [TP] levels between the shelf and the pelagic site were a recurring feature over the 1998 - 2007 period (Fig. 4b). Summer average [TP] exceeded the guidance value in pelagic waters in only two (1968 and 1994) of the eighteen years of the record. However, this threshold was exceeded in eight of the thirteen years of monitoring of the shelf, a condition that doubtless was a primary driver for the 303d listing and designation of P as a “cause/pollutant”. Multiple lines of evidence indicate that [TP] levels are higher on the shelf than in pelagic waters because of higher non-phytoplankton particle (e.g., tripton) contributions of P, received primarily in the form of particulate P (PP) from stream inputs. PP is the dominant form of P in the lake’s upper waters representing > 65% on the shelf and at site 8, on average.

Runoff events (e.g., Fig. 5a) cause local enrichment of forms of P, particularly PP (Fig. 5b and c), and turbidity (Fig. 5d) on the shelf that diverge strongly from lower levels maintained in pelagic waters. This is illustrated here for the late June to early October interval of 2004 that bounded a period of particularly high tributary flow with a number of runoff events (Fig. 5). Convergence of conditions on the shelf and the pelagic site with respect to P concentrations, [Chl], and Tn was indicated before (through June) and after (October) the high runoff interval. Dramatic enrichments in [PP] (Fig. 5b) and Tn (Fig. 5d), with noteworthy increases in [TDP] (Fig. 5c), were observed on the shelf from the runoff events. Moreover, substantial spatial heterogeneity was commonly manifested for particulate-based metrics on the shelf (± 1 standard
deviation bars of Fig. 5) during these intervals indicating the associated short-term loads were not evenly distributed throughout the shelf. An example of this heterogeneity is illustrated in an aerial photograph of the southern end of the lake following a runoff event (Fig. 6). The response of [Chl] to these increases in hydrologic and nutrient loading was modulated by comparison (Fig. 5e), with much smaller shelf versus pelagic zone differences relative to those observed for [PP] (and [TP]) and Tn. Somewhat higher average [Chl] values were observed in August on the shelf, with substantial spatial heterogeneity (Fig. 5c). However, higher concentrations were observed at the pelagic site in mid-July, late September and early October.

The ratio [PP] / [Chl] is adopted here as a metric of the consistency of [PP] (and [TP]) levels with attendant phytoplankton biomass levels. The distribution of the ratio [PP] / [Chl] has been shifted higher for the shelf sites compared to the pelagic site (Fig.7a and b); the median for the shelf (3.2) was approximately 1.7 - fold higher than for this pelagic location. These ratio values exceeded the range commonly attributed to plankton (0.5 – 1.0; Bowie et al. 1985, Chapra 1997) at site 8 for about 93% of the observations, indicating noteworthy tripton contributions even at the pelagic site. Particularly high ratio values occur on the shelf from runoff events, as illustrated for 2004 (e.g., Fig. 5b and e). The higher shelf ratios indicate greater tripton contributions in these near-shore areas compared to the pelagic site. Clay minerals, that dominate the turbidity load received from the tributaries (subsequently), and usually tripton levels on the shelf and in the lake’s pelagic waters (Effler et al. 2002b), are known to often be enriched with P (Kuo and Lotse 1972, Martin and Gloss 1980).

The effects of terrigenous tripton-based PP inputs in driving [TP] differences between the shelf and pelagic waters is also manifested in positive relationships with runoff. The residuals of individual paired measurements of the shelf average [TP] ([TP]s) and the pelagic site [TP]
([TP]$_p$) have been significantly ($p < 0.0001$) positively correlated ($r = 0.54$) with tributary flow (Fig. 7c).

Light Scattering and Secchi Disc

A strong relationship between SD$^{-1}$ and c(660) prevails in Cayuga Lake (Fig. 8a), establishing that light scattering particles, rather than light absorbing processes, regulate clarity in the lake (e.g., Davies-Colley et al. 1993). Moreover, it establishes a coupling between SD, often perceived as a trophic state metric, and the turbidity issue. Further it supports the use of c(660) as a surrogate metric for the optical attribute of clarity on the shelf, necessary for certain sites and intervals when SD ≥ depth. Summer average SD values at site 8 were systematically higher than those on the shelf throughout the 1998-2007 period (Fig. 4c), 1.3-fold on average. Multiple lines of evidence support the position that these spatial patterns, as well as temporal features, of light scattering and clarity in the lake are regulated more by tripton than phytoplankton biomass.

Phytoplankton biomass, as represented by [Chl], was not a significant regulator of the dynamics of c(660) on the shelf (Fig. 8b), and explained only a modest percentage (~ 25%) of the variations observed at site 8 (Fig. 8c). Minerogenic particles, particularly clay mineral particles, have instead been reported to be the primary driver of variations in c(660) and SD on the shelf as well as in pelagic areas (Effler et al. 2002b, Peng and Effler 2005). Moreover, numerous measurements of c(660), particularly for the shelf (Fig. 8d and e), have been higher than can reasonably be expected for the attendant phytoplankton biomass, as indicated by the paired measurements of [Chl]. The [Chl]-based estimates presented here utilized a modified version [in terms of c(660) instead of b(λ)] of the empirical relationship developed between b and [Chl] in marine waters by Morel and Maritorena (2001).
\[
\text{c}(660)_{\text{CM}} = 0.354[\text{Chl}]^{0.766}
\]

where \(\text{c}(660)_{\text{CM}}\) is the estimated contribution of phytoplankton to \(c(660)\). Values of the ratio \(c(660) + c(660)_{\text{CM}}\), based on paired measurements of \(c(660)\) and [Chl] were frequently > 1, consistent with contributions from tripton. The population of values was shifted higher for the shelf compared to the pelagic site (Fig. 8d and e), consistent with the local effects from tripton inputs.

Interannual variations in SD (as SD\(^{-1}\)) have been strongly correlated with those for [TP] for both the shelf (\(r = 0.89\), \(p = 0.00014\)) and the pelagic site (\(r = 0.7\), \(p = 0.036\); Fig. 8f). The much higher slope of the linear least squares regression fit for the shelf reflects the greater interannual variations in both of these metrics in this area of the lake. This feature is consistent with a greater susceptibility of the near-shore area of the shelf to variations in tripton inputs, particularly from the tributaries. Moreover, these dependencies, in concert with the lack of significant relationships between [Chl] and either of these metrics, are consistent with a shared dependency of SD and [TP] on tripton in this lake. A manifestation of the regulation of spatial differences of both [TP] and \(c(660)\) by differences in tripton levels is the positive relationship between the residuals of \(c(660)\) [\(\Delta c(660)\)] and [TP] [\(\Delta [\text{TP}]\)] formed from the paired shelf (average) and pelagic observations (Fig. 8g). The higher residuals reflect the short-term local effects of tripton on the shelf following runoff events (e.g., Fig. 5b, c and d). This relationship represents a modeling opportunity, as simulation of spatial differences in one metric effectively could support predictions of the other.

SAX results provide insights on the minerogenic component of tripton (the dominant fraction; Effler et al. 2002b) in Fall Creek, on the shelf, and in pelagic waters (Fig. 9, Table 1). The minerogenic light scattering \(b_m\) in this tributary, like many others (Peng et al. 2004), is
dominated by clay minerals, with quartz being the second largest contributor, over a wide range of runoff (Table 1). This “terrigenous origins” signature was preserved on the shelf and at the pelagic site for the June 30, 2004 samples, when Tn and bm levels were low (Table 1). The terrigenous signature was modified in the lake for the July 29, 2004 samples by CaCO3 precipitation (Table 1), a component of the minerogenic tripton of this system that has an autochthonous origin. This phenomenon (“whiting”) is common in hardwater alkaline lakes of this region, making noteworthy contributions to background bm levels over short intervals (e.g., 2 to 4 weeks), but with substantial interannual variations in intensity (Effler 1996). However, the whiting component of bm remains substantially less than the elevated terrigenous component that occurs on the shelf from runoff events (Upstate Freshwater Institute, unpublished data). The SAX-based estimates of bm explained nearly all of the variability in the paired Tn values for the samples analyzed here, even when the very high values from Fall Creek on July 29 were eliminated (Table 1; r² = 0.97, p < 0.002, n = 5). This is consistent with the central role of minerogenic tripton in regulating turbidity and clarity in this tributary and the lake.

The relative contributions of different particle size classes to overall bm is shown for the late July samples in a cumulative format (Fig. 9a). More than 90% of bm for all three of these samples, as well as those from the June sampling, were associated with particles in the size range of 1 to 10 µm. The median value (d50, Fig. 9) in these cumulative patterns is valuable in describing the relative importance of different particle sizes in this range. The d50 values for bm were within the range 2.26 to 4.89 µm. The particle size dependency of VV (d50 – VV) is shifted systematically toward larger sizes for the minerogenic tripton of this system (Fig. 9b, Table 1), as observed elsewhere (Effler et al. 2008). These systematic differences, delineated through the SAX characterizations, provide system-specific evidence for the disconnect in the
portions of the particle population represented by surrogate metrics of light scattering \([T_n\) or
\(c(660)\), Fig. 9a] versus gravimetric (Fig. 9b) measurements. This disconnect is an important factor contributing to the widely reported variance in empirical \([\text{TSS} - T_n]\ relationships (Davies-Colley and Smith 2001).

Hydrodynamic/Transport Issues and a Lake-Wide Survey

Hydrodynamic mixing processes, driven by the wind, including circulation currents and internal waves, promote the flushing of the shelf and transport of local inputs into the pelagic zone. The rate of flushing of the shelf is apparently rapid enough relative to the effective growth rate of phytoplankton to prevent recurring gradients in phytoplankton biomass between the shelf and the pelagic site (Fig. 4a), despite the localized inputs of P (Fig. 2d). A clear manifestation of this effect is the substantially lower shelf \([\text{TP}]\) levels (Fig. 4b) observed relative to the volume weighted concentrations of the inflows received from the local inputs (Fig. 2d).

A dynamic mass balance analysis was conducted for TP on the shelf to provide a rough estimate of the effective flushing rate of this shallow area, which accommodates the effect of mixing with pelagic waters. The shelf is treated as a completely mixed reactor that is hydrodynamically coupled to pelagic waters by an effective bulk transport coefficient \(E'(\text{m}^3/\text{s})\), and conservative behavior of TP is assumed. Accordingly,

\[
V \frac{d[\text{TP}]}{dt} = \text{TP}_L - Q \cdot [\text{TP}]_s + E'([\text{TP}]_p - [\text{TP}]_s)
\]

(3)

where \(V\) is the shelf volume (8 x \(10^6\) m\(^3\) for 6 m depth boundary, Fig. 1), and \(Q\) is the sum of local inflows. The model is mechanistically crude, uncertainties in inputs (e.g., loads) exist, and some non-conservative behavior in TP probably occurs (e.g., short-term deposition/resuspension cycling). Despite these limitations, the analysis serves to provide a reasonable first estimate of the extent of mixing between pelagic waters and the shelf. Two flushing rates are presented for a
selected year (2001) to illustrate the effect of mixing with pelagic waters. The first (fr1) corresponds to a hypothetical plug flow set of conditions, with no mixing effects with pelagic waters

\[\text{fr1} = Q + V \] \hspace{1cm} (4)

The second (fr2), systematically higher, rate includes the effects of mixing with pelagic waters, according to

\[\text{fr2} = (Q + E') + V \] \hspace{1cm} (5)

The value of \(E' \) was determined through application of the dynamic mass balance.

The time series presented for fr1 (Fig. 10a) has a daily time step, consistent with that of the inflow data. The time series of fr2 is presented as a moving average over 14 d (Fig. 10a) consistent with the frequency of lake [TP] measurements. The value of fr1 was less than 0.1 d\(^{-1}\), with the exception of two peaks (late June and late September) caused by runoff events. Most of the values were between 0.02 and 0.08 d\(^{-1}\). The more realistic estimate of flushing rate conditions, fr2, indicates generally an order of magnitude higher rate, relative to plug flow conditions (Fig. 10a). Phytoplankton growth rates could exceed fr2 only under idealized laboratory conditions (maximum of \(\sim 2 \) d\(^{-1}\), Chapra 1997), e.g., non-limiting temperature, light, and nutrient availability conditions. Only under such idealized conditions would localized phytoplankton blooms be expected on the shelf in response to local P inputs. However, actual net phytoplankton growth rates are generally substantially less than fr2 because of nutrient and light limitation to growth and the operation of an array of loss processes (Chapra 1997). Potential short-term increases in P availability from runoff events would tend to be compensated for by reduced light available from the attendant increase in light attenuation from the high levels
of tripton. Accordingly, the flushing rate of the shelf is sufficient to prevent local blooms there and systematic gradients in phytoplankton biomass extending toward the pelagic zone.

The elongated shape of Cayuga Lake and its orientation along a prevailing wind direction promotes internal seiches (e.g., tilting of the metalimnion) and internal waves (horizontal water movements associated with shearing flow at metalimnetic interfaces) in response to wind events. In the extreme, this can cause upwelling events (Mortimer 1952, Wetzel 2001). These wind event-based mixing processes augment the effects of the circulation currents that routinely drive the flushing of the shelf described above. Upwelling events (i.e., wind out of the south) have been manifested in abrupt decreases in temperature measured by the near-surface thermistor on the shelf, as illustrated for 2004 (Fig. 10b) and 2005 (Fig. 10c). These events are irregularly timed, consistent with the stochastic character of wind events in the region. The events are clear signals of intrusion of metalimnetic (and even upper hypolimnion) waters onto the shelf and the associated abrupt flushing of this shallow area.

Results from the August 6, 1996 transect of the entire lake for the upper 30 m depict relatively uniform features of thermal stratification, with locally warmer near-surface waters in the shallow northern end of the lake (Fig. 11a). Substantial longitudinal and vertical structure was observed for c(660) (Fig. 11b). The pattern suggests sources of light scattering particles from the shelf area, with transport northward. The signal was diminished at site 8, and was essentially absent at locations beyond 20 km from the south end of the lake. The indicated signal apparently depicts the effects of tripton inputs to the shelf received from a runoff event on August 1, 1996 that resulted in a daily average flow in Fall Creek of 9.0 m3/s). The estimated range of SD values extended from about 2 m (leaving the shelf) to approximately 3 m at mid-lake (based on Fig. 8a). Beyond the similarity of the general south to north gradient observed for
[Chl]\textsubscript{r} for this transect (Fig. 11c), there were substantial differences from the c(660) pattern that further support the disconnect between phytoplankton biomass and clarity in this lake. The higher levels of [Chl]\textsubscript{r} extended substantially deeper (e.g., 0 to 15 m) than for c(660) (e.g., 0 to 5 m). Moreover, the longitudinal gradient in [Chl]\textsubscript{r}, \sim 10\% decrease over about 30 km, was smaller than that for c(660) (\sim 20\% decrease). This modest gradient in [Chl]\textsubscript{r} may reflect the effects of the localization of P loading at the southern end of Cayuga Lake. The extent to which this suggested stimulation of phytoplankton growth from these inputs is recurring, or is linked to runoff events, is unknown.

Modeling Needs

Phosphorus and Cultural Eutrophication

The above analyses provide insights related to the need for water quality models, appropriate target constituents, and attributes necessary to address the issues and adequately represent the lake. The water quality issues of silt/sediment and phosphorus are subject to some confusion for the southern shelf of Cayuga Lake because of the contribution terrigenous minerogenic tripton makes to the metrics of both turbidity [i.e., T\textsubscript{n}, c(660), and SD] and [TP] (in the form of PP). These signatures are particularly conspicuous on the shelf following runoff events (e.g., Fig. 5b and d) in response to elevated inputs of this material from the tributaries (Fig. 2a and c). The value of [TP] (as well as SD) has been demonstrated here to be a flawed metric of trophic state, particularly on the shelf. Exceedances of the 20 µg/L [TP] guidance value on the shelf would not occur without the contribution of tripton (Fig. 4a and b, Fig. 7a). It's reasonable to interpret the inclusion of the shelf phosphorus issue on the 303d list as a concern for cultural eutrophication effects, not terrigenous turbidity. The minerogenic tripton form of the elevated [TP] levels of the shelf does not itself establish this fraction as innocuous...
with respect to nutrient supply to algae, as desorption from such particles has been observed to be an important source in certain systems (James et al. 1997). The monitoring record for summer average [Chl] on the shelf depicts only a modest dependence on local P loading (Fig. 4d). However, significant differences in summer average [Chl] were not observed between the shelf and the pelagic zone over the 1998-2007 period (Fig. 4a), despite the localized P loading to the shelf (Fig. 2). High levels of flushing of the shelf through mixing with pelagic waters (Fig. 10) discourages the development of gradients in phytoplankton biomass from the local P loading, a transport feature that needs to be represented in any model that describes this portion of the lake.

Rather than a phosphorus model or perhaps more complex nutrient-phytoplankton model (Chapra 1997) that would focus on the shelf, a lake-wide framework is recommended to support future management deliberations for the entire lake. Certain features of the limnological observations and resource issues are supportive of the development of such a predictive tool, including: (1) the trend of increasing mobilization of P in the hypolimnion (Fig. 2a), (2) the modest dependence of the summer average shelf [Chl] on the local P loading (Fig. 4d), (3) the modest south to north gradient in [Chl] documented in the transect of 1996 (Fig. 11c), (4) continuing development within the watershed, (5) the great resource value of the lake, and (6) uncertainties in the potential responses to future shifts in drivers (e.g., climate change). A credible nutrient water quality model would have great value in supporting related management evaluations for the lake and its watershed, by providing predictions for “what-if” scenarios. The constructs of the model framework would guide the identification and design of needed supporting studies for specification of inputs, and thereby the scope of monitoring and process studies. Accordingly, the water quality model could act as a valuable integrator of pertinent information and studies. Moreover, it can serve as a research tool to develop and test related
hypothesis. The lake monitoring and tributary loading estimates reported here would contribute to the set-up and testing of such a model, though such efforts would need to be expanded to the rest of the lake and other important inputs.

A dynamic two-dimensional (vertical and longitudinal segmentation) hydrothermal/transport model (Martin and McCutcheon 1999) is recommended to serve as the physical framework for this water quality model. Such a framework could provide the necessary simulations of the features of the stratification/mixing regime, represent the impacts of localized nutrient loading on [Chl] patterns along the lake’s axis, and support simulations over the seasons of interest for phytoplankton growth. Assignment of the shelf, as specified here, as the southern most model segment would be appropriate to continue to address water quality issues on the shelf. This same physical submodel could also accept other water quality submodels for the lake, as management interests and related information expands. However, given the noteworthy contribution tripton-based P makes to the P pool, particularly on the shelf, this fraction will need to be explicitly or implicitly represented in the model (subsequently).

Turbidity and Clarity

In sharp contrast to the phosphorus issue, clear signatures of silt/sediment impact have been resolved on the shelf in the form of elevated c(660) (and Tₙ) levels (e.g., Fig. 5d), in response to runoff event inputs (Fig. 3d, Fig. 6, Fig. 7c). The conspicuous coupling of tributary signals and the imparted signatures on the shelf represents a modeling opportunity. Adoption of a surrogate of light scattering, c(660) or Tₙ, as a model state variable, is recommended, instead of [TSS], given the close coupling of the public’s perception of water quality to clarity (Smith and Davies-Colley 1992; Fig. 8a) and the extent of disconnect between metrics of light scattering and TSS for minerogenic particles (Fig. 9a and b) in this system. A water quality model is
recommended that would simulate the terrigenous component of tripton (Table 1) received from tributary inputs, with the focus on the impacts of runoff events on the shelf. This component, when added to phytoplankton and CaCO$_3$ components, would represent the overall measured $c(660)$

$$c(660) = c(660)_t + c(660)_{Chl} + c(660)_w$$

where $c(660)_t$, $c(660)_{Chl}$, and $c(660)_w$ are the components associated with terrigenous tripton, phytoplankton biomass, and CaCO$_3$, respectively. The additive character of these various components of light scattering is appropriate because c is an inherent optical property (Davies-Colley et al. 1993, Kirk 1994). Values of $c(660)_{Chl}$ and $c(660)_w$ could be specified (not simulated) based on the long-term measurements. These values are small for the shelf when $c(660)$ is high from runoff events (Fig. 5d). A model of terrigenous $c(660)$ that adopted multiple fractions of $c(660)$ that settled at different rates was recently developed and tested for a reservoir (Gelds and Effler 2007). This approach may also be appropriate for Cayuga Lake. Monitoring to date (e.g., Upstate Freshwater Institute 2006) indicates the sediment resuspension source (Bloesch 1995) of $c(660)$ is small relative to external loads during the intervals of greatest silt/sediment impacts, and thus need not be resolved in an early version of the model.

Simulations of terrigenous $c(660)$ levels could also support predictions of this component of [TP] and [TSS] and differences in these metrics between the shelf and pelagic zone (e.g., Fig. 8g), based on empirical relationships developed from paired measurements with $c(660)$. Substantial variability in the $c(660)$ – [TSS] relationship is to be expected, in light of the system-specific information presented above on the different particles size dependencies of light scattering and gravimetric attributes (Table 1, Fig. 9). Management concerns for the spatial patterns of impact relative to potential recreational activity (e.g., bathing beach) on the shelf,
together with the spatial heterogeneity documented following runoff events (Fig. 5d and Fig. 6),
dictate the need for high spatial resolution, including in the lateral dimension, for the transport
framework. These needs can be met with a three-dimensional hydrodynamic/transport model.
Such frameworks can be appropriately used for short-term (e.g., days to weeks) simulations
consistent with a focus on effects of runoff events in Cayuga Lake (Martin and McCutcheon
1999). The operative water quality standard for the terrigenous tripton model in a TMDL
analysis may be the state's swimming safety clarity limit of SD ≥ 1.2 m. The model could
provide simulations of the spatial extent and duration of violations on the shelf, according to
individual runoff event characteristics, as well as improvements that could be expected from
implementation of management actions such as erosion control in the watershed (e.g., shifts in
relationships of Fig. 3d). Kinetic representations, including number of size classes, partitioning
amongst the classes, and associated settling velocities (Gelda and Effler 2007) found to be
successful in this model could support description of the behavior of tripton-based P in the lake-
wide P or nutrient phytoplankton model.
References

Rast, W. and G. F. Lee. 1978. Summary analysis of the north american project (US portion) OECD eutrophication project: Nutrient loading-lake response relationships and trophic state indices. EPA-600/3-78-008. USEPA Corvallis Environmental Research Laboratory, Corvallis, OR.

Walker, W. W. 1995. FLUX: Stream load computations Version 4.5. Environmental Laboratory, USACE Waterways Experiment Station, Vicksburg, MS.

Table 1. Summary of SAX results for Cayuga Lake.

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>T<sub>n</sub> (NTU)</th>
<th>b<sub>m</sub> (m<sup>-1</sup>)</th>
<th>b<sub>m</sub> type distribution (%)</th>
<th>d<sub>50</sub>/b<sub>m</sub> (μm)</th>
<th>d<sub>50</sub>/VV<sub>m</sub> (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Creek</td>
<td>30 Jun 04</td>
<td>6.1</td>
<td>2.67</td>
<td>Clay 80.6, Ca-rich 0.7, Quartz 8.6, Misc 3.3</td>
<td>6.92</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.4</td>
<td>0.48</td>
<td>Clay 74.9, Ca-rich 1.2, Quartz 15.5, Misc 3.6</td>
<td>4.82</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.6</td>
<td>0.21</td>
<td>Clay 76.8, Ca-rich 3.8, Quartz 8.7, Misc 4.0</td>
<td>6.77</td>
<td>4.9</td>
</tr>
<tr>
<td>Fall Creek</td>
<td>29 Jul 04</td>
<td>99.5</td>
<td>37.76</td>
<td>Clay 85.0, Ca-rich 1.1, Quartz 8.9, Misc 1.2</td>
<td>3.88</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.1</td>
<td>1.09</td>
<td>Clay 28.6, Ca-rich 37.0, Quartz 2.9, Misc 27.9</td>
<td>2.92</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.1</td>
<td>0.66</td>
<td>Clay 16.3, Ca-rich 51.4, Quartz 1.9, Misc 26.6</td>
<td>3.80</td>
<td>2.3</td>
</tr>
</tbody>
</table>

35
Within Finger Lakes and New York.

Figure 1. Sampling sites for Cayuga Lake, bathymetry for southern shell position.
Figure 2. Annual average tributary and discharge conditions for the April-October interval over the 1998-2007 period, partitioned according to input: (a) flow rate, Q, (b) total dissolved phosphorus loading rate, TDP$_L$, (c) particulate phosphorus loading rate, PP$_L$, and (d) volume-weighted total phosphorus concentration, [TP]$_{fw}$. Loads (a-c) partitioned according to five inputs; [TP]$_{fw}$ partitioned accord in [TDP]$_{fw}$ and [PP]$_{fw}$ components.
Figure 3. Constituent levels and relationships for inputs to the shelf of Cayuga Lake: (a) [SRP] in LSC intake (equal to discharge) over the 2000 – 2006 interval, (b) [PP] versus Q relationships for Fall Creek and Cayuga Inlet, (c) [TDP] versus Q relationships for Fall Creek and Cayuga Inlet, (d) Tn versus Q relationships for Fall Creek and Cayuga Inlet, and (e) [PP] versus Tn relationships for Fall Creek and Cayuga Inlet. Supporting observations from Fall Creek included, but not for Cayuga Inlet, (f) – (d).
Figure 4. Long-term trends in common trophic state metrics for Cayuga Lake: (a) summer (June-September) average [Chl], (b) summer average [TP], (c) summer average SD, (d) evaluation of relationships between summer average [Chl] and TDPL to the shelf over the 1998-2007 period, and (e) seasonal pattern of [Chl] for the 1998-2007 period as monthly means with ±1 standard deviation as vertical bars.
Figure 5. Comparative dynamics for the shelf and a pelagic site on Cayuga Lake for the June – October interval of 2004: (a) daily tributary flow (summation of Fall Creek and Cayuga Inlet), (b) [PP], (c) [TDP], (d) Tₘ, and (e) [Chl]. Shelf values are averages; limits of vertical bars for shelf observations correspond to ± 1 standard deviation based on all shelf observations.
Figure 6. Aerial photograph of the southern end of Cayuga Lake that depicts turbid plumes and non-uniform distribution on the shelf.
Figure 7. Phosphorus relationships on the shelf and at a pelagic site on Cayuga Lake for the 1998 – 2007 period: (a) distribution of occurrence of the [PP] / [Chl] ratio on the shelf, (b) distribution of occurrence of the [PP] / [Chl] ratio at the pelagic site, and (c) dependence of the residual of shelf [TP] ([TP]ₘ) and pelagic TP ([TP]ₚ) values on the tributary (Fall Creek plus Cayuga Inlet) flow (Q) to the shelf.
Figure 8. SD and c(660) relationships for Cayuga Lake for the 1998 – 2007 period: (a) dependence of 1/SD on c(660), (b) dependence of 1/SD on [Chl] for the shelf, (c) dependence of 1/SD on [Chl] for the pelagic site, (d) distribution of the c(660) ÷ c(660)Chl ratio for the shelf, (e) distribution of the c(660) ÷ c(660)Chl ratio for the pelagic site, (f) dependence of 1/SD on [TP] for summer average conditions on the shelf and at the pelagic site, and (g) relationship between the spatial residuals (shelf average minus pelagic) of c(660) (Δc(660)) and [TP] (Δ[TP]).
Figure 9. Size dependencies of attributes of minerogenic particles in Fall Creek, on the shelf (site 5), and in pelagic waters (site 8) of Cayuga Lake, July 29, 2004 from SAX: (a) b_m, the minerogenic light scattering coefficient, from Mie theory calculations, and (b) W_m, the minerogenic particle volume per unit water.
Figure 10. Hydrodynamic and transport features for the shelf of Cayuga Lake: (a) dynamics of flushing rate on the shelf, based on mass balance analysis and for the plug flow assumption, (b) time series of hourly surface temperatures at the southern end of the lake for the April – October interval of 2004, and (c) time series of hourly surface temperatures of the southern end of the lake for the April – October interval of 2005. Occurrences of conspicuous upwelling events identified by arrows in (b) and (c).
Figure 11. Longitudinal and vertical (0 to 30 m) patterns along the primary axis of Cayuga Lake on August 6, 1996 as color contours: (a) temperature, (b) $c(660)$, and (c) $[\text{Chl}]_r$.